
Fermilab FERMILAB-Conf-00/083 February 2001

Farm Batch System
and
Fermi Inter-Process Communication and Synchronization Toolkit

M. Breitung, J. Fromm, T. Levshina, I. Mandrichenko, M. Schweitzer

Fermi National Accelerator Laboratory,
Batavia, Illinois, U.S.A.

Abstract

Farms Batch System (FBS) was developed as a batch process management system for off-
line Run II data processing at Fermilab. FBS will manage PC farms composed of up to 250
nodes and scalable to 1000 nodes with disk capacity of up to several TB. FBS allows users to
start arrays of parallel processes on multiple computers. It uses a simplified ”resource count-
ing” method load balancing. FBS has been successfully used for more than a year at Fermilab
by fixed target experiments and will be used for collider experiment off-line data processing.

Fermi Inter-Process Communication toolkit (FIPC) was designed as a supplement product
for FBS that helps establish synchronization and communication between processes running in
a distributed batch environment. However, FIPC is an independent package, and can be used
with other batch systems, as well as in a non-batch environment. FIPC provides users with a
variety of global distributed objects such as semaphores, queues and string variables. Other
types of objects can be easily added to FIPC.

FIPC has been running on several PC farms at Fermilab for half a year and is going to be
used by CDF for off-line data processing.

Keywords: PC farms, batch system, computational resource management

1 Introduction

Large farms of inexpensive Intel-based computers running Linux OS are going to play increasingly
important role as main tool for Run II off-line data processing at Fermilab. Computer power needs
for Run II experiments are estimated to reach about 350 KMIPS by year 2001. Estimated size of
PC farm used by a Run II experiment is about 250 dual-CPU 500 MHz Pentium computers. There
will be more than 500 processes concurrently running on the farm, 2-3 processes per computer. In
order to operate such a farm, it is necessary to have production management system responsible for
allocation of computational resources as well as user process scheduling, monitoring and control.
Due to large number of simultaneously running farm processes, in order to simplify process man-
agement and bookkeeping, it seems to be necessary to be able to group concurrent processes into
”parallel jobs”, and use such parallel job, instead of individual process, as the unit of operation of
the production management system.

Some popular batch systems such as commercial LSF [2] and PBS [1] (Portable Batch Sys-
tem) were explored and evaluated. As a result, it was found that these systems do not match all of
the requirements for farm-based off-line data processing production management system.

Farm Batch System (FBS) [3] was proposed, designed and developed to be a batch process
management and resource utilization control system that will be used for farm data processing.

2 Farm Batch System (FBS)

2.1 Requirements

FBS design scalability requirements are more ambitious than those dictated by anticipated size of
a typical Run II data processing farm. FBS is designed to manage farms composed of up to 1000
computers. It should manage up to 2000 simultaneously running batch user processes. FBS should
run arrays (job sections in FBS terms) of concurrent processes. Assuming that typical batch job
section will consist of up to 10 processes, and run for up to 10 hours, FBS has to be able to handle
more than 200 simultaneously running job sections, and job section start rate from 20 to 200 per
hour.

FBS should provide basic job control services such as job submission and cancellation, job
scheduling, job status monitoring, basic accounting, resource utilization monitoring.

Since FBS will be used in the environment of large farms of relatively inexpensive and not
necessarily too reliable computers, it has to be robust with respect to unexpected shutdown of some
number of farm nodes as well as failures of FBS components.

Typical Run II production farm will primarily consist of Linux computers, but will include
several large computers running under different operating systems such as IRIX or OSF1. There-
fore, FBS should be highly portable across various UNIX platforms.

Due to big number of computers to operate, FBS support and maintenance costs per single
computer should be low.

2.2 FBS Design and Features

FBS is designed based on several assumptions.

2.2.1 Farm Model

FBS uses relatively simple model of a farm (Figure 1). Farm consists of computers (worker nodes)
of one or more classes (node types). Computers within one class are identical, and FBS can pick
any available of them for next user process to start on.

Computers are grouped into classes based on nature and amount of resources available on
them. For example, a farm may consist of several multi-processor nodes (CPU nodes), some nodes
with additional disk space attached to them (disk nodes), and some number of nodes with relatively
fast network connection (network nodes). In this case, one can describe the farm as having 3 classes
of nodes. Node classes can be used to logically partition a farm into non-overlapping parts (farm-
lets).

2.2.2 Load Balancing and Resource Management

One of important FBS’ functions is to prevent excessive use of resources and evenly distribute load
among farm nodes.

Distinctive characteristic of farm computing is low number of active processes running on
each farm node. Therefore, each active process will use substantial amount of farm node resources.
In case of 2 or 3 processes per node, each process will be using 50% or 33% of total node resources.
Although Run II data analysis processes are expected to be primarily CPU-bound processes, with
constant resource utilization, they are going to go through certain (relatively short) phases of rel-
atively low resource consumption, for example, when downloading or uploading data. Such in-
evitable short term irregularities in individual process resource consumption cause significant ir-
regularities in total node resources utilization. This makes it difficult if not impossible to use simple
methods of forecasting future node resources utilization based on current measurements.

Figure 1: FBS Farm Model

Because FBS is designed for farm architecture, unlike other batch systems, it does not rely
on load measurements at all. Instead, FBS uses ”resource counting” method for load balancing.
The idea of this method is that FBS administrator has to describe the farm in terms of available
resources such as CPU power, disk space, etc. FBS user has to specify resource consumption re-
quirements for each process either at the time of job submission, or as part of FBS configuration.
In current design, FBS assumes constant resource utilization level during batch process lifetime,
which is very close to the reality for the computational tasks FBS is expected to manage. Based
on the knowledge of resource capacity of the farm nodes, resources used by running processes and
resource requirements of pending batch jobs, FBS makes the decision when and where to start each
batch job.

Because FBS does not actually measure any resources, and knows them only by name and
their stated capacity, the resources are referred to as ”abstract resources”. In early versions, FBS
was capable of managing only 2 abstract resources: CPU power and disk space on worker nodes.
Other types of resources such as magnetic tape drives, network bandwidth, NFS-shared disk space,
etc. can be represented as FBS abstract resources.

2.2.3 Major Components

FBS design (Figure 2) consists of the following components:

� FBS User Interface (UI). UI provides command line as well as graphical interface to FBS.
UI allows user to submit, monitor and control batch jobs as well as monitor current status
and availability of the farm.

� LSF (Load Sharing Facility) is a commercial software package distributed by Platform Soft-
ware used as a component of FBS. LSF’s responsibilities within FBS are quite limited. It is
responsible only for job queuing, scheduling, maintaining persistent job information. LSF
does not know anything about farm nodes and does not measure resource availability there.
Instead, FBS uses ELIM extension to notify LSF how many more batch processes can be
started at any time.

� FLIMD is an FBS daemon that is responsible for keeping track of running processes, re-
sources allocated to running processes, farm nodes status, and reporting in some way re-
source availability to LSF through ELIM. In addition, FLIMD makes the decision on which
farm nodes to start processes of each section.

Figure 2: FBS Design

� Job Manager (JM) is an FBS process that controls single section running on the farm. LSF
starts JMs as LSF batch processes. JM is responsible for allocating resources on farm nodes
with FLIMD, and communicating with FARMD(s) on nodes allocated for the section by
FLIMD to start user processes, and wait for their completion.

� FARMD is a FBS daemon that runs on each worker node. It creates environment for user
processes, starts them as requested by JM, reports their status to JM and UI, notifies JM when
user process exits.

� Historian is FBS historical database manager. It receives section start/exit statistics and stores
it on disk. UI provides a tool for reading this database and generating reports as requested
by user.

� Logger or log daemon is responsible for receiving and storing error and event log informa-
tion sent by other FBS components. This information is primarily used for FBS debugging
and trouble shooting.

2.2.4 Robustness and Reliability

FBS design makes it highly reliable and robust with respect to failure of individual components.
This is achieved by distributing run-time information among different FBS components and avoid-
ing redundancy of the information. Basic idea is that FLIMD, as the most critical component, can
recover after failure based on information received from JMs. JM is highly reliable component and
most likely reason for its failure is failure of the node where it runs. Since in typical configuration
all JMs and LSF run on the same node, failure of the node inevitably means failure of LSF and the
whole farm, and necessarily leads to re-initialization of the batch system. Unlikely failure of an in-

dividual JM or FARMD leads only to failure affected batch job or process, which is not considered
to be dangerous.

2.2.5 Job and Section

Figure 3: FBS Job Structure

FBS job (Figure 3) consists of one or more sections. Section is an array of parallel processes,
running on the same or different nodes of the farm. The processes of the same section are consid-
ered to be identical in terms of resources consumption. FBS starts all processes of the same section
at the same time. Each section has its unique name within the job.

Although it provides some basic support for users of such parallel computing tools as PVM
and MPI, FBS does not have or use any knowledge of how processes of the section communicate
with each other or whether they communicate at all.

User can specify dependencies between different sections of the same job. For example,
user can request that section A does not start until section B finishes. FBS provides 4 types of
dependencies:
� started (start section A only after section B starts)
� done (start section A only when section B finishes successfully)
� exited (start section A only when section B finishes unsuccessfully)
� ended (start section A only when section B finishes regardless of success or failure)

Exit status of a section is calculated based on UNIX exit codes of each individual section process
and other section parameters.

2.2.6 Sample Job Description File

The following is an example of FBS Job Description File. This JDF describes 3 sections, Init,
Process and CleanUp.

First section is supposed to dump an input tape to disk. It is submitted to the queue named
”IO QUEUE”. FBS configuration specifies that sections submitted to this queue consist of I/O-
bound processes, and that such processes require relatively low CPU utilization. The section con-
sists of one process. This process requires 3 GB of local disk space on the worker node.

Second section is named ”Process”. It performs data processing. It is submitted to queue
named ”CPU QUEUE”. FBS configuration defines resource requirements for processes of sections
submitted into this queue according to their CPU-bound nature. The section will start 5 concurrent
processes, each will occupy 10 GB of local disk space. The section depends on Init section. Sec-
tion ”Process” will not start until section ”Init” finishes successfully. If section ”Init” fails, section
”Process” will never start.

Last section of this job is supposed to perform clean-up actions in case Process section fails.
It will start only if Process section fails.

SECTION Init

QUEUE = IO_QUEUE

EXEC = my_bin/dump_tape.sh XYZ1234 /mnt/stage/XYZ1234

NUMPROC = 1

DISK = 3

SECTION Process

QUEUE = CPU_QUEUE

EXEC = my_bin/do_processing.sh /mnt/stage/XYZ1234

NUMPROC = 5

DISK = 10

DEPEND = done(Init)

SECTION CleanUp

QUEUE = FAST_QUEUE

EXEC = my_bin/std_cleanup.sh /mnt/stage/XYZ1234

NUMPROC = 1

DEPEND = exited(Process)

2.3 FBSNG: FBS without LSF

Since the time this article was originally written, FBS project has made significant progress. This
effort led to entirely re-designed product named ”FBS, Next Generation” (FBSNG). FBSNG [4]
inherits the concepts and design ideas of FBS. It does not use LSF as its component any more.
This makes FBSNG an independent and complete full-scale batch system for farm architecture.

Major reasons for undertaking the re-design effort were:
� Reducing support, maintenance and licensing costs
� Avoid potential scalability problems caused by the way FBS uses LSF
� FBS design was cumbersome because it had to interact with LSF
� Using LSF as batch job scheduler was a major obstacle in further FBS development and

adding necessary features
FBSNG design is shown on Figure 4. First version of FBSNG was released in July 2000,

and since then it is being successfully used in production on several PC farms at Fermilab ranging
from 37 to 100 nodes, as well as by off-site collaborators. FBSNG successfully passed series of

Figure 4: FBS re-design

stress tests designed to determine whether it meets the scalability requirements. These tests have
confirmed that FBSNG can successfully handle required number of simultaneously running batch
processes and far exceeds job release rate requirements.

Currently, the following additional features are implemented in FBSNG:

� The concept of ”abstract resources” is fully implemented. FBSNG can manage unlimited
number of different resources of the following types:

– Global resources, not associated with any particular farm node such as network band-
width, NFS-shared disk space;

– Local resources such as CPU, memory, local disk space, tape drives;
– Node attributes which can be used to represent such resources as flavor and version of

operating system, special software installed. Abstract node attributes such as ”pink”
and ”blue” can be and are being used to logically partition the farm into smaller sub-
farms or farmlets.

– Resource pools can be used to describe sets interchangeable resources such as scratch
disks available on worker nodes so that FBSNG automatically chooses whichever disk

is available and allocates requested amount of space to the batch process.
� Customizable scheduler designed to manage parallel jobs
� Capability to run a batch job in interactive mode
� Full scale FBSNG Application Programmer’s Interface which can be used to build custom

data processing systems on top of FBSNG
� Support for Kerberos user authentication

Currently, FBSNG is installed on 5 farms of different sizes at FNAL and several off-site
farms and is being successfully used in production.

3 Fermi Inter-Process Communication and Synchronization Toolkit (FIPC)

FBS can be successfully used to manage a computational resource only if its allocation and deal-
location is synchronized with the batch process start and finish respectively. Such ”synchronized”
resources as CPU power, scratch disk space, magnetic tape drives fall into this category.

However, not all computational resources available on a farm behave this way. Some re-
sources are needed to be allocated only for small portions of process lifetime. One example of
such ”short-term” resource is network bandwidth used to transfer input or output data file over the
network. Resources of the other category, ”long-term” resources, must remain allocated for indefi-
nitely long time after the batch process finishes, for example, disk space allocated by data produced
by the batch process.

FIPC was proposed, designed and developed to help farm users manage allocation of non-
synchronized resources and establish communication between cooperating processes running on
a farm. Essentially, FIPC is a system that provides users with a set of distributed inter-process
communication (IPC) objects accessible from any farm computer.

3.1 FIPC Features

Currently, FIPC provides the following IPC object types:
� Lock is a simple binary semaphore object.
� Gate is a counted semaphore. It resembles an entrance to a room with limited number of

seats available.
� Client queue is a first-in-first-out queue which batch processes can enter and wait for an ac-

cess to certain resources.
� Integer flag is a simple integer variable with a functionality of getting/setting value, waiting

until the value of the flag becomes greater than, less than or equal to certain value, and then
atomically altering flag’s value. Flag can be used as a semaphore.

� General-purpose list has double-ended queue functionality. User can add and remove arbi-
trary text string items to head or tail of the list. This object can be used as a message queue
as illustrated in the example below.

� String variable. It provides basic string operations in terms of the functionality of the stan-
dard UNIX Regular Expressions package: getting/setting string value, waiting for value to
match some pattern, atomic match-and-set operation.

FIPC provides two level of interface - shell command line interface and API. Currently, only Python
binding of FIPC API is available.

FIPC Object names are organized in a name space similar to UNIX file system name space.
User can create ”(sub)directories” and place FIPC objects in them. The name space as well as all
FIPC objects are global: all objects are visible from any node of the FIPC cluster - set of computers
where FIPC clients are configured to communicate with the same set of FIPC servers. FIPC objects

have ownership and protection attributes. Users can protect their objects from unauthorized access
to them.

State altering operations on FIPC objects are atomic: any operation (for example match-and-
set operation on a string variable), performed on an FIPC object is guaranteed to finish before the
state of the object can be altered by some other operation.

Locks, gates, and client queues provide clean-up functionality. For example, if a client en-
tered into a queue, and then unexpectedly exited without removing itself from the queue, FIPC will
clean the queue up removing all non-existing clients.

In order to provide the clean-up functionality, every FIPC client is assigned a unique FIPC
ID. There are two types of FIPC clients: single process clients and session clients. Single process
client is identified by its UNIX process id. Session client is a UNIX session - group of processes
running on the same node with the same UNIX session id. Session client is considered to be alive
for the purpose of clean-up functionality as long as there is at least one process of the session run-
ning on the client’s node. Since every UNIX shell command is executed in a context of a new
process with unique process id, and such process inherits session id from its parent shell, session
id, but not process id can be used to recognize temporary processes executing individual FIPC com-
mands as related of the same client. Therefore, session clients should be used with FIPC command
line interface, whereas FIPC API clients can be single-process clients.

3.2 FIPC Design

Figure 5: FIPC Design

FIPC consists of the following components (Figure 5):
� FIPC Cluster is a set of nodes where FIPC client software is configured to use the same set

of FIPC servers.
� FIPC Servers. There are one or more FIPC Servers running in FIPC cluster. They connect

to each other via TCP sockets to form a Ring. Each server connected to the Ring has exactly
the same information as any other. This makes FIPC servers completely redundant and al-

lows any server to disconnect from the Ring at any time without causing any loss of infor-
mation. Servers can re-join the Ring at any time and recover all the information. Usually,
FIPC servers are started during system boot time.

� FIPC API is a library that provides access to FIPC servers and IPC objects. FIPC API es-
tablishes new connection with randomly chosen available FIPC server for each operation.

� User Interface provides shell-level command line interface to FIPC. It is implemented in
terms of FIPC API, and provides the same functionality as API.

� FIPC Locals are simple daemons that are capable to answer whether particular user process
or session is still running on the node. This information is used by FIPC to perform clean-up
operations on locks, gates and queues.

3.3 Redundancy, Scalability and Robustness

Due to complete redundancy of FIPC servers, FIPC cluster can be built around any number of FIPC
servers, but least one server is required to run at any time. FIPC administrator may decide to run
more FIPC servers on more than one computer of the FIPC cluster in order to:
� increase robustness of the FIPC with respect to failure of individual FIPC server nodes;
� distribute communication load among several FIPC server processes and computers they are

running on;
� allow smooth FIPC upgrades: in most cases, FIPC servers can be shot down, upgraded and

re-started one after the other without any loss of information or any other effect on users.

4 FIPC and FBS

The following example illustrates how FIPC and FBS can be used to establish communication and
synchronization between cooperating batch processes. The example shows simple solution of the
following problem. Suppose a batch job is to generate some number of data files and then process
them. The job consists of some number of concurrent ”reader” processes and some number of con-
current ”writer” processes. Readers are guaranteed not to start before writers start. Each writer pro-
duces one data file at a time. Each data file has to be processed by one and only one reader process.
The following C-shell script and JDF file illustrate how such batch job could be implemented us-
ing FIPC and FBS. Instead of generating files of data, in this example, each writer simply generates
some message and sends it to a reader. In reality, these messages may contain data file names.

#!/bin/csh

Create set of unique FIPC object names based on FBS job id

set obj_name_prefix = "/rw_test/${FBS_JOB_ID}"

set msg_buf = "${obj_name_prefix}/buf"

set nwr_flag = "${obj_name_prefix}/nwriters"

set nmsg_flag = "${obj_name_prefix}/nmsg_in_buf"

Create and initialize FIPC objects if necessary

If the objects already exist, this fragment will do nothing

fipc create list $msg_buf

fipc create flag $nwr_flag 0

fipc create flag $nmsg_flag 0

Generate unique process ID from FBS-provided variables

set my_id = "${FBS_JOB_ID}.${FBS_SECTION_NAME}.${FBS_PROC_NO}"

Get my type, reader, writer, or cleaner

set my_type = "${FBS_SECTION_NAME}"

if ("$my_type" == "Writer") then

#

writer process

#

@ nmsgs = $1 # total number of messages to send

@ buf_capacity = $2 # maximum capacity of message buffer

fipc fset $nwr_flag + 1 # let readers know we are ready

@ n = 0

while ($n < $nmsgs)

@ n++

Generate message.

In reality, generate data file and send its name as a message

set msg = "Message #${n} from ${my_id}"

Allocate room in the buffer by raising semaphore

fipc fwait $nmsg_flag \< $buf_capacity + 1

Put the message in the buffer

fipc add tail $msg_buf "$msg"

echo "Sent msg <$msg>"

end

fipc fset $nwr_flag - 1

else if ("$my_type" == "Reader") then

#

reader process

#

@ nw = 1

while ($nw > 0)

Remove first message from the buffer

set msg = `fipc fetch -t 100 head $msg_buf`

if ($status == 100) then

If timed-out, check if writers are still there

@ nw = `fipc show flag $nwr_flag`

else

Decrement number of messages in the buffer

fipc fset $nmsg_buf - 1

Process the message

echo "Received msg <$msg>"

endif

#

end

else

#

clean-up - destroy FIPC objects

#

fipc delete list $msg_buf

fipc delete flag $nmsg_flag

fipc delete flag $nwr_flag

endif

In the first part of the script, each batch process creates set of FIPC objects. In order to ensure
each batch job uses its own set of objects, FBS job id is used to generate job-specific object names.
Because FIPC object creation command does nothing when the object already exists, it is safe to
issue object creation commands in every batch process. After creating objects, the batch process
uses FBS job section name to determine which function, reader, writer, or clean up it is going to
perform.

This script uses 3 FIPC objects:
� List object named ”msg buf” is used as a message queue. Writers add messages to the tail

of the list, and readers retrieve them from its head.
� Flag ”nmsg flag” is a semaphore used to limit queue size. Every time a writer process places

a new message in the queue, this flag is incremented, and then reader process decrements it
after processing the message.

� Flag ”nwr flag” is used to signal readers that there are no more active writers in the job, and
therefore readers may exit.
Clean-up section of the script destroys FIPC objects used by the job.

SECTION Writer

NUMPROC = 7 # start 7 writers

EXEC = rw.csh 10 5 # each will generate 10 data files;

limit queue size to 5

...

SECTION Reader

NUMPROC = 5 # 5 readers

EXEC = rw.csh

DEPEND = started(Writer)

...

SECTION Cleanup

NUMPROC = 1

EXEC = rw.csh

DEPEND = ended(Writer) && ended(Reader)

...

Notice the use of DEPEND clauses in Reader and Cleanup sections. They make sure that
reader processes do not start before writers, and that FIPC objects are destroyed only when they
are no longer in use.

Although FIPC was meant to be a package used by FBS users, it does not depend on FBS, and
can be used separately in any distributed environment where it is necessary to implement simple
communication and/or synchronization between processes. However, if used together, FBS and
FIPC form a set of tools, which can be successfully used to build distributed applications in such
an environment as off-line data processing farms.

5 Conclusion

FBS and FIPC were designed and developed in Fermilab as elements of software infrastructure for
off-line data processing in PC farm environment. Both products have been successfully used for
several years on PC farms of different sizes and structures, used by different groups of physicists to
perform different types of computing [5],[6]. Both products have proved to be simple yet powerful
and flexible tools for farm data processing.

References

1 PBS web page http://pbs.mrj.com
2 Platform Computing web page http://www.platform.com
3 FBSNG web page http://www-isd.fnal.gov/fbs
4 FBSNG web page http://www-isd.fnal.gov/fbsng
5 Fermilab preprint Conf-00-095-E
6 Fermilab preprint TM-2109

